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ABSTRACT
Phenology is critical in simulating crop production and hydrol-
ogy and must be sufficiently robust to respond to varying 
environments, soils, and management practices. Phenological 
algorithms typically focus on the air temperature response func-
tion and rarely quantify the phenological responses to varying 
water deficits, particularly for versions of the Environmental 
Policy Integrated Climate model (EPIC)-based plant growth 
component used in many agroecosystem models. Three EPIC-
based plant growth components (Soil Water Assessment Tool 
[SWAT], Wind Erosion Prediction System [WEPS], and the 
Unified Plant Growth Model [UPGM]) have been incorporated 
into the spatially distributed Agricultural Ecosystems Services 
model [AgES], and only the UPGM includes a phenological 
response to varying water deficits. These three plant components 
were used to evaluate the phenological responses of winter wheat 
(Triticum aestivum L.) to varying water deficits and whether 
having a water stress factor in UPGM improves the simulation 
of phenology. A 3-yr irrigation study and a 4-yr study across a 
rainfed landscape were used in the evaluation. Only the UPGM 
simulated all five of the developmental stagesmeasured. The 
UPGM was the only component that simulated a phenological 
response to variable water deficits, resulting in better prediction 
of phenology. For example, the RMSE (days) and relative error 
(RE, days) decreased and index of agreement (d) increased in 
predicting maturity from SWAT (RMSE = 18.4; RE = 9.2; d = 
0.34) to WEPS (RMSE = 6.2; RE = 1.0, d = 0.63) to the UPGM 
(RMSE = 6.1; RE = 0.1; d = 0.70). Incorporating phenological 
responses to varying water deficits improves the accuracy and 
robustness of predicting phenology, which is particularly impor-
tant in spatially distributed agroecosystem models.

Core Ideas
• Phenology is critical in accurately simulating crop production and 

hydrology.
• The AgES watershed model evaluated three EPIC-based plant 

growth components.
• Only UPGM was able to simulate phenological responses to varying 

water deficits.
• The results promote more robust simulation of phenology in varying 

environments.

Spatially distributed agroecosystem models simulate 
many biogeochemical processes across a landscape com-
prised of diverse land uses, environments, soils, and topog-

raphy. Management practices also typically vary; for example, 
there are various irrigation strategies, ranging from full irriga-
tion to dryland. The phenology component of these models is 
critical in accurately simulating crop production and hydrology 
for these various conditions.

Extensive phenological research has long-identified tem-
perature (typically using air temperature) as the primary factor 
influencing plant development (e.g., McMaster, 1997; Reamur, 
1735). Quantifying the temperature response has resulted in 
numerous thermal response functions used as the foundation of 
phenology algorithms. Models typically provide a default esti-
mate of the thermal time (e.g., growing degree-days [GDD] and 
heat units) between developmental events. However, other envi-
ronmental factors, such as water, light (photoperiod, quality, 
and intensity), nutrients, salinity, and CO2, have been shown 
to influence phenology (e.g., McMaster [1997] cites many refer-
ences). These “secondary” factors are rarely considered in the 
phenology algorithms (notable exceptions are incorporating 
vernalization and photoperiod effects). Of particular concern is 
ignoring the clear impact of varying water deficits on phenology 
(e.g., Angus and Moncur, 1977; McMaster and Wilhelm, 2003; 
Singh et al., 1984). For instance, a nearly universal response 
among crops is delayed seedling emergence and shorter grain 
filling duration under water deficits (e.g., McMaster et al., 
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2008). One could hypothesize that incorporating phenological 
responses to varying water deficits would improve the accuracy 
and robustness of phenology algorithms.

To test this hypothesis, we evaluated the phenological responses 
of winter wheat to varying water deficits for three EPIC-based 
plant growth components incorporated into the spatially distrib-
uted Agricultural Ecosystems Services (AgES) model: the Soil 
Water Assessment Tool (SWAT), the Wind Erosion Prediction 
System (WEPS), and the Unified Plant Growth Model (UPGM). 
All three models used similar temperature response functions, 
with the UPGM adding a water stress response function.

METHODS
Model and Component Overviews

The AgES model (Cruz et al., 2017) was the platform used to 
run the SWAT, WEPS, and UPGM plant growth components. 
The AgES model is a modular, Java-based, spatially distributed 
hydrology/water quality agroecosystem model that implements 
hydrological processes as encapsulated in process-based model-
ing components (David et al., 2013). The hydrological routines 
of the AgES model (Ascough et al., 2012, 2015; Green et al., 
2015) consist of modeling components for interception, snow 
accumulation and ablation, horizontal-differentiated soil water 
balance, groundwater balance, runoff generation, and explicitly 
computed lateral surface and subsurface flows, including flood 
routing in the watershed stream network. The nutrient trans-
port modules evaluated in this study were adopted primarily 
from the SWAT watershed model, converted to Java for use 
in the European J2K-S model (Fink et al., 2007), and further 
modified for coupling to the AgES hydrologic components. The 
nutrient modules include components for simulating soil tem-
perature, crop growth, and N turnover (Neitsch et al., 2009). 
Five different soil N pools are considered to allow modeling of 
different N inputs (e.g., inorganic fertilizer, organic manure) 
and N transformations between these pools. Nitrogen reduc-
tion, denitrification, volatilization, and plant uptake are mod-
eled in conjunction with a dynamic crop growth module.

The EPIC plant growth component (Williams et al., 1989) 
from the Environmental Policy Integrated Climate model has 
been used as the foundation of many agroecosystem models 
including the SWAT (Arnold et al., 1995), WEPS (Wagner, 
2013), and UPGM (McMaster et al., 2014) plant growth 
components incorporated into the AgES model and used in 
comparing their phenology algorithms in this paper. Whereas 
the SWAT model made few modifications to the EPIC plant 
growth component, considerable changes were made to the 
WEPS and UPGM to meet model purposes. All WEPS modifi-
cations were oriented toward better predictions of wind erosion, 
including (i) partitioning aboveground biomass to leaves, stems, 
and reproductive fractions (Retta et al., 1996, 2000); (ii) simu-
lating plant shoot dynamics in much greater detail (shoot num-
ber, diameter, mass, and height) that respond to water stress; (iii) 
using partitioning to reproductive parts to determine yield (as 
opposed to the Harvest Index approach); and (iv) adding more 
phenological detail and incorporating a vernalization algorithm.

The WEPS plant growth component was restructured into 
FORTRAN 90/95 and was used as the platform for build-
ing the UPGM plant growth component (McMaster et al., 
2014). Seedling emergence, canopy height, and phenology 

algorithms that responded to varying amounts of water stress 
from PhenologyMMS (McMaster et al., 2011, 2013) and 
SHOOTGRO (McMaster et al., 1992; Wilhelm et al., 1993; 
Zalud et al., 2003) were incorporated into the UPGM. The 
FORTRAN 90/95 WEPS and UPGM plant growth compo-
nents were incorporated into the Java-based AgES model, and 
the user selects the plant growth component to use in simula-
tions. Recently, the WEPS and UPGM have been translated 
into Java to facilitate model maintenance and distribution.

Details for simulating phenology by the SWAT, WEPS, and 
UPGM are given in McMaster et al. (2014), but a general sum-
mary relevant to this paper follows. All phenology algorithms 
in the three models are based on using a thermal time approach. 
The SWAT and WEPS models use a similar temperature 
response function. Daily heat units (HU) are calculated as:

avg baseHU
ii T T= −  

[1]

where avgi
T is the average daily air temperature (°C) on day i, and 

Tbase is the crop-specific base temperature (°C). All three mod-
els use 0°C for Tbase. No growth occurs at or below Tbase, and 
there is no upper temperature limit. Phenological development is 
viewed as a heat unit index (HUI) progressing from 0 (at plant-
ing) to 1 (physiological maturity for crops) and is determined by:
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where HU is the sum of daily heat units from planting to cur-
rent day (i), and THUM is the crop-specific amount of heat 
units required from planting to maturity. For crops requiring 
vernalization, a delay is calculated and reduces the heat unit 
accumulation for the day.

Although the UPGM allows for selecting different tempera-
ture response functions, we used Method 1 (McMaster, 2009; 
McMaster and Wilhelm, 1997) to have the same temperature 
response function as shown in Eq. [1].

Crops have many developmental events, a number of which 
are not readily visible but are important (Fig. 1). The SWAT 
and WEPS models simulate only a few of these events. Both 
the SWAT and WEPS provide static default values that do 
not change with varying water deficits for (i) the number of 
heat units from planting to maturity, (ii) a 0 to 1 value for the 
proportion through the life cycle at which the canopy begins to 
senesce, and (iii) a 0 to 1 value for the proportion through the 
life cycle at which emergence occurs (WEPS only). The develop-
mental event of jointing (J, when the first node is above the soil 
surface) (Large, 1954; Zadoks et al., 1974) was estimated in the 
WEPS as follows. The day that biomass partitioning to repro-
ductive parts begins is assumed to be the double ridge (DR) 
stage (McMaster, 1997, 2005), and jointing occurs 180 GDD 
after DR (McMaster et al., 2005) (Fig. 1 and 2).

The UPGM explicitly simulates many of the developmental 
events shown in Fig. 1. Default thermal time estimates between 
developmental events for two extremes of water deficits, non-
stressed (“No-Stress”, GN) and severely stressed (“Stressed”, 
GS), are provided for each crop. Nonstressed values would be for 
nonlimiting conditions such as full irrigation or high rainfall 
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Fig. 1. Winter wheat shoot apex developmental sequence correlated with growth stages (Large, 1954) for conditions with no stresses. 
The time line is presented as thermal time (TT, in growing degree-days [GDD], using 0°C base temperature and Method 1 of McMaster 
and Wilhelm [1997]) and number of leaves (#LVS) for a generic medium-maturity variety used in the simulations. The “number of leaves” 
option after booting (B) is not meant to imply that more leaves are appearing; rather, it uses the phyllochron as the measure of thermal 
time. Question marks indicate areas of uncertainty or significant variation among cultivars or environments. See Fig. 3 for identification of 
growth stages on the time line. Adapted from McMaster et al. (2005)

Fig. 2. Winter wheat phenology for both water nonlimiting (No-stress) and limiting (Stressed) conditions. Intervals between stages are 
shown as both thermal time (TT, in growing degree-days, using 0°C base temperature and Method 1 of McMaster and Wilhelm [1997]) 
and number of leaves (#LVS) for a generic medium-maturity variety used in the simulations. Adapted from McMaster et al. (2005).
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regions, and severely stressed values would be for extreme water 
deficits not leading to crop death (i.e., just above permanent 
wilting point) that can be found in drought years in semiarid 
environments (Fig. 2). For each crop, “No-Stress” and “Stressed” 
parameters are provided for early-, medium-, and late-maturity 
classes (or occasionally for crops such as corn by the number of 
days to maturity, e.g., 90-d, 100-d, etc.) as well as some specific 
varieties that the user can select.

We tested the UPGM for optimum/no-stress conditions 
for corn (McMaster et al., 2014) but not for conditions that 
were less than optimum. A water stress response curve from 
PhenologyMMS (McMaster et al., 2013) was used to adjust for 
varying water deficits (Fig. 3). A simple linear regression is used to 
interpolate between the default “No-Stress” and “Stressed” values. 
Threshold values for a water stress factor are set at 0.8, where plant 
water deficits above this are assumed to be not limiting, and at 0.4, 
below which no further adjustment to water deficits is expected.

Experimental Data Sets

Two experimental data sets from semiarid northeastern 
Colorado were used in testing the SWAT, WEPS, and UPGM 
phenology models. Both data sets measured five developmental 
events: jointing (J; when the first node is above the soil surface), 

flag leaf growth complete (FLC; flag leaf blade growth completed 
as measured by formation of the ligule on the flag leaf, which is 
the end of leaf appearance on a shoot), booting (B; defined to 
occur at FLC), heading (H; appearance of spike emerging from 
the flag leaf, not including awns), start of anthesis (AS; when the 
first anthers are visible in the spike), and physiological maturity 
(M; denoted by the absence of all green color in the spike and 
subtending peduncle) (Hanft and Wych, 1982). Further clari-
fication on these developmental events can be found in Large 
(1954), McMaster (1997), and Zadoks et al. (1974).

The first data set was a 3-yr study (September 2008 to 
August 2011) conducted at the USDA–ARS Limited Irrigation 
Research Farm located near Greeley, CO (40° 26’ 57.13” N; 
104° 38’ 12.04” W; 1427 masl). Soil texture at the site ranges 
from fine sandy loam to clay loam (mesic Usti Haplargids and 
mesic Aridic Arguistolls). Soils are comprised of aeolian mate-
rial from Ogallala sediments and are deep and well drained.

Conventional pre-planting tillage consisted of disking (to ~10 
cm depth) and roller-harrowing to prepare the seedbed. Based 
on soil tests, fertilizer was applied after disking and before roller 
harrowing to assure adequate plant nutrition for fully irrigated 
wheat production. Planting dates were 2 Oct. 2008, 6 Oct. 
2009, and 8 Oct. 2010. Immediately after planting, sprinklers 
were used to apply 24, 25, and 43 mm of water in 2008, 2009, 
and 2010, respectively, to ensure emergence.

Each year, five irrigation treatments were randomly placed 
within three blocks per season. Twenty-four varieties were ran-
domized within each irrigation treatment. Drip irrigation was 
used to precisely control the amount of water applied with mini-
mal spatial variation. Irrigation generally did not begin until late 
March, shortly before the jointing stage. Irrigation treatments 
ranged from full irrigation (denoted “Full,” maintaining available 
soil water >75%) to dryland (denoted “Dry,” no irrigation). Three 
other irrigation treatments focused on alleviating water stress at 
the critical developmental stages of jointing and anthesis. The 
Jointing irrigation (JI) treatment brought the Dry conditions up 
to >80% available soil water, similarly for the Anthesis irrigation 
(AI) treatment. The fifth treatment was applying irrigation at 
both the jointing and anthesis developmental stages (JI+AI). The 
Dry, Full, JI, and AI treatments were done for all 3 yr; the JI+AI 
treatment was done for the first 2 yr. For the third year, a Full-low 
N treatment (half of the pre-plant fertilizer was applied, irrigated 
the same as for the Full treatment) replaced the JI+AI treatment. 
In this study, only the Full and Dry treatments were considered 
because we wanted to test the most extreme conditions in evaluat-
ing the phenological responses to varying water deficits.

Twenty-four varieties were observed that varied between 
hard red and white wheats, height classes, and maturity classes. 
We measured phenology data for 18 medium-maturity variet-
ies (Above, Ankor, Avalanche, Baca, Bill Brown, BondCL, 
CO940610, Danby, Goodstreak, Hatcher, Jagalene, Keota, 
NuDakota, Platte, Prairie Red, RonL, Sandy, Yuma). Weather 
permitting, each plot was observed 3 d a week (typically 
Monday, Wednesday, and Friday), and the dates that the first 
shoots and when half of the shoots within a plot reached the 
developmental stage were recorded.

The second data set (denoted herein as Drake Farm) exam-
ined the spatial relationship across a landscape, taking advan-
tage of the water routing capabilities of the AgES model. A 

Fig. 3. Water stress response function used to adjust the growing 
degree-days (GDD) required to reach a developmental event 
as a function of water stress. Input values for nonlimiting water 
deficits (No-stress) or water-limiting deficits (i.e., just above 
permanent wilting point; Stress) are adjusted for intermediate 
0–1 values of water stress. (a) Case where water stress results 
in the developmental event occurred earlier (i.e., fewer GDD 
required). (b) The opposite case where water stress delays the 
developmental event. Adapted from McMaster et al. (2013).
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6-yr experiment was started in 2001 on a farm field (40.61N, 
104.84W, 1559–1585 masl) located east of Fort Collins and west 
of Ault, CO. The field is approximately 100 ha with topographic 
undulations and soil variation (Green et al., 2009). Mapped 
soil units include Wagonwheel coarse silty-loam (mesic Aridic 
Ustorthents), Colby fine silty-loam (mesic Aridic Ustorthents), 
and Kim fine sandy-loam (mesic Ustic Torriorthents). Slopes at 
the phenology sites within the field vary from 0.65 to 8.4% (m 
m–1 × 100%), and aspects range from 26 to 209 degrees clock-
wise from north. Data from the first 2 yr of the experiment are 
not included in this paper because the experiment was being 
established in 2001–2002 (planting year/harvest year) and in 
2002–2003 the crop was lost due to drought.

A crop–fallow rotation was applied in approximately 
120-m-wide strips across the field. Winter wheat was planted 
in autumn in the previous year’s fallow strips and harvested in 
summer of the following year. After harvest, the strips remained 
fallow until the second autumn (about 13–14 mo) before being 
replanted. Certified seed of the winter wheat cultivar Above 
(classified as medium-maturity) was planted at depths of 5 to 8 
cm in alternating strips on 1 Oct. 2003, 23 to 27 Sept. 2004, 1 
Oct. 2005, and 3 Nov. 2006. 

Terrain attributes were computed from a 5-m grid digital 
elevation model. Raw elevation data were collected at 5-m spac-
ing using a Trimble (Trimble Navigation Limited) survey-grade 
global positioning system. Erskine et al. (2006, 2007) described 
the data acquisition and interpolation onto a 5-m grid with a 
cross-validation error of 0.03 m for elevation. The terrain attri-
butes were assessed for the mean of the 5-m attributes over the 
30 × 30 m site area for each landscape position.

The AgES model requires the delineation of the landscape 
into “homogenous” hydrologic response units for spatial routing 
of water. Delineation based on land surface topography and crop 
management boundaries was performed using an AML tool, 
WDAML (Watershed Delineation in ARC Macro Language), 
as described in Green et al. (2014). This delineation resulted in 
27 hydrologic response units within a 56-ha watershed contain-
ing the sample sites and draining to an outlet at the east edge of 
the field. Various AgES model soil and hydrologic input param-
eters were calibrated to observed soil moisture and runoff using 
a shuffled complex evolution calibration tool, Luca (Hay and 
Umemoto, 2006), which is included with the AgES model.

Ten 30 × 30 m sites were established each growing year from 
2003–2004 through 2006–2007, with 2003–2004 and 2005–
2006 having the same sites and 2004–2005 and 2006–2007 
having the same sites. In each area, half of the 10 sites were located 
in one cropped strip and half were in a separate cropped strip. 
Phenology was observed over time at two locations within each 
30 × 30 m site. Sites were chosen to sample a range of various 
terrain attributes such as slope, aspect, elevation, specific contrib-
uting area, and soil type. The field is representative of topographi-
cally undulating landscapes in eastern Colorado, but not all fields 
in the region have this much relief (~13% slope), so flatter fields 
are expected to display lesser topographic effects on phenology.

Wheat emergence and developmental stages for 4 yr begin-
ning autumn 2003 were sampled at each of 10 landscape posi-
tions/sites per growing season. To measure the developmental 
stages, subsamples at two locations were made that were repre-
sentative of the mean plant growth within each site just prior 

to the jointing stage. For each subsample, 10 individual main 
shoots were tagged along 1 m of a cropped row. These tagged 
shoots were repeatedly observed (weather permitting, 3 d a 
week), and the day of year each main stem was first observed 
to have reached a developmental stage was recorded. The mean 
day of year of the 20 main stems was used to estimate when the 
developmental stage was reached.

Air temperatures were recorded every half hour at each of 
the 10 sites during the growing season. One thermocouple 
temperature probe (Water Temp Pro v. 1, Onset Computer 
Corporation) was installed at the center of each 30 × 30 m site 
for above-canopy air temperature. The sensor was placed at a 
1-m height above the soil surface and maintained at this height 
regardless of the canopy height, which for our variety and envi-
ronments was always less than the sensor height. Further details 
for this experiment can be found in McMaster et al. (2012).

Model Runs and Evaluation Statistics

All model runs were made using default crop parameters for 
several reasons. Running spatially distributed agroecosystem 
models (e.g., AgES, SWAT, APEX) in watersheds must address 
simulating diverse environments, management practices (e.g., 
irrigation, fertilizers, tillage), soils, and land uses (e.g., different 
crops and varieties). Parameter calibration, or adjustment, is 
complex and time consuming even if the user has the knowledge, 
time, and interest to do so. Using default parameters would 
address the primary objective of determining whether adding a 
water stress response function to similar thermal-based phenol-
ogy algorithms would increase model accuracy and robustness 
over a wide range of conditions. For the UPGM, (i) default phe-
nology parameters for the medium-maturity class were used, and 
(ii) initial soil water at planting for the seedbed zone was set to 
“Optimum” for determining germination and emergence in both 
data set runs. Optimum for the Greeley data set runs seemed 
appropriate because sprinkler irrigation occurred immediately 
after planting. For the Drake Farm data set runs (dryland condi-
tions), soil water at planting varied both spatially within the year 
and among years, making it unclear which category to choose. 
We did runs using “Medium,” and the results on phenology were 
essentially unaffected from optimum.

Four statistical evaluation criteria were used to assess model 
performance: RMSE, relative error (RE), index of agreement 
(d), and normalized objective function (NOF). The RMSE was 
calculated by:

( )
2

1RMSE

n

i i
i

P O

n
=

−
=
∑

  [3]

where Pi is the ith predicted value, Oi is the ith observed value, 
and n is the number of data pairs.

Relative error was expressed in percent as:

( )
RE 100

P O

O

−
=   [4]

where P is the predicted mean, and O  is the observed mean. 
Relative error is the measure of the mean tendency of the simu-
lated values to be larger or smaller than the observed values. 
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Values of 0 indicate no bias, positive values indicate a bias of the 
model overestimating the observed values, and negative values 
indicate a tendency to underestimate observed values.

The index of agreement (d) was calculated as:

( )

( )
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2

1

1
| ' | | ' |

n

i i
i

n

i i
i

P O
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=

=

 − 
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∑

, 0 ≤ d ≤ 1  [5]

where Pi, Oi, and n are as previously defined; 'i iP P O= −  and 
'i iO O O= −  , where O  is as previously defined; and the enclos-

ing bars (| |) indicate absolute values. A d value of 1 indicates 
complete agreement between model predictions and observa-
tions; a d value of 0 indicates no relationship.

The NOF was calculated as:

RMSENOF
O

=   [6]

where RMSE and O  are as previously defined. The NOF is a 
relative value to compare model performance for different data 
sets. When NOF = 0, there is a perfect fit between observed and 
simulated values, and values <1 may be viewed as having a simu-
lation error of <1 SD around the experimental mean.

RESULTS
The two experimental data sets provided a range of water defi-

cits for evaluating the phenology algorithms of the three models. 
The Greeley data set allowed for a direct comparison between two 

different water stress levels each year. The Full irrigation treat-
ment attempted to keep available soil water above 75%, beginning 
just prior to the Jointing developmental stage through maturity. 
The Dryland treatment varied in total precipitation considerably 
among the 3 yr for the growing season (1 September–30 June), 
with the 2010–2011 period having the lowest precipitation (169 
mm) when compared with 2008–2009 (234 mm) and 2009–
2010 (270 mm; Table 1). Both 2008–2009 and 2009–2010 were 
above the long-term mean (195 mm). When combining precipita-
tion with irrigation applied to the Full treatment, 2010–2011 had 
the greatest difference between the Full and Dry treatments (257, 
264, and 374 mm for 2008–2009, 2009–2010, and 2010–2011, 
respectively). The 2010–2011 period also had the highest mean 
air temperature (6.9°C) when compared with 2008–2009 
(6.7°C) and 2009–2010 (5.7°C), although it was equal to the 
long-term mean (6.9°C). Precipitation and air temperature also 
varied considerably during each year, particularly for the grain 
filling period (1 May–30 June).

The Drake Farm dryland data set provided a spatial dimension 
in a landscape that differed in soil water and precipitation among 
years (Table 2) (Green and Erskine, 2011). For the growing season 
(1 September–30 June), only the 2004–2005 period was above the 
long-term precipitation (321 and 265 mm, respectively), and much 
of this was due to 66 mm of rain occurring from 2 June through 
4 June 2005. As with the Greeley data set, precipitation and air 
temperature also varied considerably during each year.

Observed data were available for five developmental stages: 
jointing (J), flag leaf growth complete/beginning of booting 
(FLC), heading (H), start of anthesis (AS), and physiological 

Table 1. Weather and irrigation data for Greeley, CO, experiment. Long-term weather data are from 3 Mar. 1992 through 14 Aug. 2018. 
Weather data are given for different intervals related to seasons or periods for developmental stages. All irrigation was by drip irriga-
tion, except all treatments were sprinkler irrigated immediately after planting to ensure emergence (24, 25, and 43 mm for 2008–2009, 
2009–2010, and 2010–2011, respectively). Drip irrigation did not begin until “spring” (near jointing).

Period
2008–2009 2009–2010 2010–2011 Long-term mean

Tavg† Prec† Irri† Tavg Prec Irri Tavg Prec Irri Tavg Prec
°C –––— mm —––– °C —––– mm –––— °C –––— mm —––– °C mm

Year (1 Sept.– 31 Aug.) 9.0 349 257 8.5 354 290 9.7 235 374 9.4 266
Growing season (1 Sept.–30 June) 6.7 234 257 5.7 270 264 6.9 169 374 6.9 195
Postvernalization (1 Jan.–30 June) 7.4 173 233 6.7 229 247 6.5 146 330 7.2 139
Autumn (1 Sept.–31 Dec.) 5.6 61 24 4.1 40.9 17 7.5 23 43.3 6.3 56
Winter (1 Jan.–31 Mar.) 1.3 5 27 –0.2 14.5 0 –0.3 7 69.4 0.2 17
Spring (1 Mar.–31 May) 8.9 85 233 8.4 141.5 97 8.6 124 190 9.2 99
Grain filling (1 May–30 June) 16.4 119 154 16.2 130.6 206 15.6 118 207 17 88
† Values are average temperature (Tavg), cumulative precipitation (Prec), and irrigation for the Full treatment (Irri) for the period covered.

Table 2. Weather data for the Drake Farm, CO, experiment. Long-term weather data are for all years collected at the study site (1 Jan. 
2002–31 July 2018). Weather data are given for different intervals related to seasons or periods for developmental stages. Updated from 
McMaster et al. (2012).

Item
2003–2004 (Area 1) 2004–2005 (Area 2) 2005–2006 (Area 1) 2006–2007 (Area 2) Study site

Tavg† Prec† Tavg Prec Tavg Prec Tavg Prec Tavg Prec
°C mm °C mm °C mm °C mm °C mm

Year (1 Sept.–31 Aug.) 9.6 232 9.9 340‡ 10.3 194 9.2 277 9.7 342
Growing season (1 Sept.–30 June) 7.5 163 7.4 321‡ 8.0 155 6.4 179 7.2 265
Postvernalization (1 Jan.–30 June) 7.7 136 7.5 234‡ 8.1 65 6.9 106 7.3 183
Autumn (1 Sept.–31 Dec.) 7.2 27 7.3 87 7.8 90 5.7 73 7.0 77
Winter (1 Jan.–31 Mar.) 1.9 21 1.9 45 1.0 28 0.1 45 1.0 38
Spring (1 Mar.–31 May) 10.3 63 8.5 120 8.9 56 9.6 86 8.7 129
Grain filling (1 May–30 June) 15.9 88 15.6 144‡ 17.9 28 16.7 41 16.2 105
† Values are average temperature (Tavg) and cumulative precipitation (Prec).
‡ June precipitation = 105.8 mm
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maturity (M) as described previously. All three plant growth 
components simulated the start of canopy senescence and M. 
Estimates of J were possible from the WEPS, and only the 
UPGM explicitly simulated all five developmental stages. The 
simulated phenological response to varying water deficits by the 
three models was evaluated using default crop parameters.

The SWAT, WEPS, and UPGM plant growth components 
simulated the end of crop growth associated with maturity 
(Fig. 4). Based on the model evaluation statistics, the WEPS and 
the UPGM were quite similar, and both models more accurately 
simulated M than SWAT. This difference was largely due to 
the default parameter for simulating M in SWAT being too 
high, resulting in a much later simulated date than the observed 
date. As expected, only the UPGM could simulate maturity 
differences observed among the Full and Dry treatments of the 
Greeley data set (resulting in UPGM having a lower RE).

All three plant growth components also simulated the start 
of leaf senescence, although the comparison was confounded 

by how this stage is defined (Fig. 5). Both WEPS and SWAT 
have a parameter setting the time through the life cycle that 
“leaf” senescence begins (i.e., meaning when the canopy leaf 
area index starts to decline and ignoring the senescence of the 
earliest leaves). The UPGM simulates the stage when the flag 
leaf completes its growth (FLC), which is when the canopy leaf 
area index should start to decline because no more leaves appear 
and older leaves are senescing. Regardless, both the SWAT and 
WEPS started leaf senescence much later than the observed 
date of FLC, suggesting the default parameters were set too 
late. When comparing the overall models, the model evalua-
tion statistics indicate that model accuracy improved from the 
SWAT to the WEPS to the UPGM. The UPGM showed a 
slight response to water deficits in the Greeley treatments (FLC 
was only measured for 2 of the 3 yr), which matched the very 
slight difference in the observed dates.

Only the UPGM was able to explicitly simulate the jointing 
developmental stage. The SWAT model provided no means to 

Fig. 4. Simulation of physiological maturity using default parameters. Greeley Wet is for Full irrigation treatment, Greeley Dry is for the 
dryland irrigation treatment, and Drake Dry is for the Drake Farm dryland experiment. Standard deviation bars for observed data are 
shown. d, index of agreement; DOY, day of year; RE, relative error; NOF, normalized objective function.

Fig. 5. Simulation of the start of canopy leaf senescence (i.e., decline in canopy leaf area index) using default parameters. Greeley Wet is for Full 
irrigation treatment (only observed data for 2008–2009 and 2010–2011), Greeley Dry is for the dryland irrigation treatment (only observed 
data for 2008–2009 and 2010–2011), and Drake Dry is for the Drake Farm dryland experiment. Start of canopy senescence was determined 
by the first day of decline in leaf biomass in the Soil Water Assessment Tool (SWAT) model and the Wind Erosion Prediction System (WEPS), 
and flag leaf growth complete (end of leaf appearance and growth) in the Unified Plant Growth Model (UPGM). Standard deviation bars for 
observed values are shown. d, index of agreement; DOY, day of year; RE, relative error; NOF, normalized objective function.
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estimate when J would be simulated; however, we were able to 
estimate jointing in the WEPS model as follows. The WEPS 
simulates the beginning of biomass partitioning to reproductive 
structures, which in the case of winter wheat would be approxi-
mately the DR developmental stage (McMaster, 1997, 2005). 
Jointing occurs approximately 180 GDD after DR (McMaster 
et al., 2005) (Fig. 1 and 2) and was added to the date of the 
beginning of biomass partitioning to reproductive structures 
(Fig. 6A) to estimate J (Fig. 6B). Both WEPS and UPGM simu-
lated J equally well, although the UPGM model captured the 
slight difference between the Full and Dry treatments in the 
Greeley experiment better than WEPS.

The UPGM model explicitly simulates many additional 
developmental stages not considered in SWAT or WEPS, 
including the important developmental events of heading and 
start of anthesis shown in Fig. 7, for which we had observed 
data. Anthesis is particularly important because grain set occurs 
at this time when partitioning to stem biomass is ending and 
significant partitioning to seeds begins. The UPGM captures 
differences between the Full and Dry treatments in the Greeley 
experiment observed for both H and A.

In simulating the five developmental stages by UPGM (Fig. 
7), model accuracy increased and RE is decreased as maturity 
is approached. This pattern can partly be explained by the 
observed difference between the Full and Dry treatments in the 
Greeley experiment increasing from the J stage (essentially no 
difference) to M (the Dry treatment occurring significantly ear-
lier). Adding the water response function shifted the simulated 
Dry points for each year closer to the 1–1 line.

DISCUSSION
All three EPIC-based plant growth components use a similar 

thermal time approach in simulating maturity. The SWAT and 
WEPS models provide static default input phenology parame-
ters based on thermal time that do not respond to varying water 
deficits. It would seem likely that the accuracy and robustness 

of simulating phenology across widely varying environments, 
such as fully irrigated to dryland treatments in a semiarid envi-
ronment, would increase if a water stress response function was 
incorporated to alter the static default parameters for varying 
water deficits. Comparing the UPGM plant growth component 
that incorporates a water stress response function with the 
SWAT and WEPS plant growth components supported this 
expectation. The UPGM predicted the developmental stages of 
J, the start of canopy senescence, and M as well or better than 
the WEPS and was always better than SWAT. Most impor-
tantly, the UPGM was more robust because it could simulate 
appropriately the phenological responses to varying water defi-
cits across a landscape or irrigation level.

Questions could arise whether the increased robustness by 
adding water stress responses comes at the cost of more param-
eters and whether it improves determining default parameters. 
To partially address these issues, consider the prediction of 
maturity. The WEPS and SWAT models require one param-
eter for the thermal time from planting to maturity, whereas 
the UPGM requires two parameters (the GN and GS values). 
Although the UPGM has an additional parameter, determin-
ing the second parameter involves little additional work. No 
additional parameters are required for the water stress response 
function. The disadvantage of using a single parameter in the 
SWAT and the WEPS is determining what the single default 
values should be. Should it be for optimal conditions (e.g., irri-
gated/high precipitation), extremely dry conditions (e.g., dry-
land/low precipitation), or somewhere in between? Regardless, 
there will be no response to varying water deficits.

The UPGM also explicitly simulates the response of many 
developmental stages to varying water deficits that are not simu-
lated in the SWAT and WEPS models. We were able to evaluate 
two additional developmental stages with our observed data (H 
and AS). A general trend was found where accuracy increased 
and RE decreased as developmental stages approached maturity. 
The robustness in simulating the phenological responses to water 

Fig. 6. Simulation of jointing. Greeley Wet is for the Full irrigation treatment, Greeley Dry is for the dryland irrigation treatment, and 
Drake Dry is for the Drake Farm dryland experiment. Only the Unified Plant Growth Model (UPGM) explicitly simulates the jointing 
growth stage. To estimate when jointing would be simulated by the Wind Erosion Prediction System (WEPS), the date of the beginning of 
reproductive biomass simulated by WEPS was assumed to be the double ridge stage for wheat. Because J occurs 180 GDD after the DR 
stage, it could then be estimated by the WEPS. No estimate of jointing was possible for the Soil Water Assessment Tool (SWAT) model. 
The Greeley observed data for jointing had a very small SD and error bars are therefore not shown. d, index of agreement; DOY, day of 
year; RE, relative error; NOF, normalized objective function.
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deficits of many developmental events is necessary for models, 
such as AgES, used in simulating crop production in a watershed 
addressing variable management practices for the same crop (e.g., 
dryland or irrigation) or varying spatial soil water based on soil 
characteristics and routing across the landscape.

Several possible enhancements were identified to improve 
the UPGM phenology component. Although the algorithm 
captured phenological responses to varying water deficits in 
this study with no adjustments to default parameters or to 
the algorithm, the water stress function incorporated from 
PhenologyMMS (Fig. 3) has not been rigorously tested for any 
crop. The water stress function has much uncertainty, with 
the threshold values somewhat arbitrarily set to 0.4 and 0.8 
and a simple linear regression used to interpolate between the 
No-Stress and Stressed values. This function should be tested 
for a wide range of water deficits.

Implementing the water stress function into a model can be 
done in several ways. As currently implemented in AgES, we 
used the PhenologyMMS approach (McMaster et al., 2013), 
where the GDD required to reach the next stage is estimated 
daily using a linear regression to interpolate between the 
No-Stress and Stressed values. Sudden shifts in the environ-
ment (e.g., a significant rainstorm or an irrigation event) could 
reset the value to no-Stress even if drought was severe during the 
interval and near the Stressed value. We did not examine how 
often this occurred in our simulations of the Greeley Dry treat-
ment and the Drake Farm dryland sites. If this is determined to 

be a problem, one solution might be to use a running 5-d average 
of the water stress index as done in the SHOOTGRO model 
(McMaster et al., 1992; Wilhelm et al., 1993; Zalud et al., 2003). 
Another option is to use the water stress function to adjust the 
daily calculated GDD before accumulating to the required 
no-Stress value. Given the overall uncertainty in the water stress 
function and how to implement it into a model, working on 
these improvements may not lead to simulating phenology more 
accurately in complex spatially distributed models such as AgES.

All phenology components are challenged with determining 
the input parameters for the number of GDD between devel-
opmental events for various reasons. In UPGM, the No-Stress 
(for optimal water) and Stressed (above permanent wilting point 
values) default parameters for the GDD between successive 
developmental stages are difficult to measure under field condi-
tions. It is difficult to maintain optimum or near-permanent 
wilting point water conditions for the full life cycle of the plant, 
and dryland treatments are affected by highly variable rainfall. 
As a result for our data set, the No-Stress values probably should 
be greater and the Stress values less than the default parameters.

Differences in parameters and their response to varying water 
deficits among genotypes are also well known. The SWAT and 
WEPS models provide default parameters for a “generic” crop, 
although it is not clear for what environmental conditions these 
apply (e.g., whether it is for irrigated/high rainfall or dryland in 
a semiarid environment). The user is able to change these default 
parameters to better match the environment and genotype they 

Fig. 7. Simulation of five developmental stages by the Unified Plant Growth Model (UPGM) using default parameters. Greeley Wet is for the 
Full irrigation treatment, Greeley Dry is for the dryland irrigation treatment, and Drake Dry is for the Drake Farm dryland experiment. 
Standard deviation error bars are shown for observed data. The Greeley observed data for jointing had a very small SD and are therefore 
not shown. The simulated date of the beginning of reproductive biomass by Wind Erosion Prediction System (WEPS), which was assumed 
to be the double ridge stage for wheat. McMaster et al. (2005) estimate that 180 growing degree-days occur from double ridge to jointing, 
and this value was used. d, index of agreement; DOY, day of year; RE, relative error; NOF, normalized objective function.
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are simulating, but little information on the range of values for 
a particular environment are provided. The UPGM provides 
parameters for the phenological responses to varying water defi-
cits, thereby allowing the user to avoid the need to do this. In 
addition, the UPGM provides default parameters for each crop 
based on general classifications for maturity grouping common 
for most crops. For instance, corn is often classified into 100-d, 
105-d, etc. maturity groups, and wheat is often ranked from 
early to late maturity classes. In the case of wheat, we provide 
default parameters for early-, medium-, and late-maturity classes 
as well as some specific varieties.

Although the approach used in the UPGM alleviates some 
problems with phenology parameterization, a major obstacle 
remains regarding how to parameterize the vast number of 
existing genotypes for a crop and the continued release of new 
genotypes. For several decades, considerable research (mostly 
on the flowering stage) has shed light on the genetic pathways 
controlling development (e.g., Brown et al., 2013; McMaster 
and Moragues, 2018) and genotype differences related to 
drought tolerance (e.g., Grogan et al., 2016a, 2016b). Numerous 
efforts have explored the hope that a priori setting of param-
eters using specific genes/alleles might avoid the prohibitively 
expensive phenotyping of numerous genotypes (e.g., Brown et 
al., 2013; Uptmoor et al., 2017; Welch et al., 2003; White and 
Hoogenboom, 2003).

Work is underway to take advantage of the ability of UPGM 
to explicitly simulate the response of many developmental 
events to varying water stress in models such as AgES and 
WEPS by better identifying the timing and activity of sources 
and sinks to improve aboveground partitioning (Fig. 1). For 
example, processes in SWAT and WEPS, such as the start of 
canopy senescence or partitioning to leaf, stem, and reproduc-
tive parts (WEPS only; Retta et al. [1996, 2000]) occur based 
on a static 0–1 input parameter representing the simulated 
proportion through the life cycle from planting/emergence to 
maturity. We are testing whether setting/adjusting the par-
titioning coefficients to leaves, stems, and reproductive plant 
fractions based on specific developmental stages that respond to 
varying water deficits will improve UPGM simulations of yield, 
biomass, and other plant traits.

CONCLUSIONS
The UPGM simulations were more accurate and had less 

relative error than SWAT or WEPS plant growth components 
with similar thermal time algorithms for predicting phenology. 
A primary reason was adding a water stress response function 
to UPGM within the AgES distributed watershed model. The 
UPGM explicitly simulated many more developmental events 
than the SWAT or WEPS models, providing opportunities for 
more clearly identifying sources and sinks present throughout 
the life cycle and enhancing partitioning algorithms. These 
results infer more robust spatial simulation of plant growth with 
water and air temperature feedback in models such as AgES.
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